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Abstract
Relying on the hidden Markov model improved by the particle swarm optimization algorithm (PSO-HMM), we develop a dual-decision
method to address the issue of state-dependent futures hedging. Our approach is attractive in two ways. First, it uses the PSO algorithm to
overcome the shortcomings of the traditional algorithm, which can easily fall into the local optima to estimate parameters in a hidden Markov
mode. Second, this paper proposes a new hedge position adjustment method based on the identified market states, instead of sticking to the hedge
position calculated by the commonly used GARCH-type models to achieve a better trade-off between risk hedging and return acquisition.
Specifically, we first improve the accuracy of parameter measurement and employ the PSO-HMM to identify two market states, bear and bull, and
fully illustrate the rationality and effectiveness of the proposed model. Based on the market states identified, we then adjust the hedge ratio
estimated by GARCH-type models and compare the hedging effects of no hedge, model-driven, and state-dependent strategies. Our empirical
results show that the PSO-HMM method can improve the accuracy of state identification over the classical HMM. The market state-dependent
hedging strategy has better performance than other strategies when it comes to the trade-off between the return and the risk of a hedged portfolio.
Furthermore, robustness checks under different conditions confirm that the state-dependent hedging strategy outperforms the model-driven
hedging and no hedge strategies. Thus, our research sheds new light on conventional hedging models.
Copyright © 2022 Borsa İstanbul Anonim Şirketi. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The price of oil is highly volatile. International crude oil
prices are affect by related events through various channels of
influence. The factors that affect the situation include not only
political conflicts in oil-producing areas but also unexpected
events, such as terrorist attacks and the discovery of new crude
oil deposits. These factors, coupled with widespread media
coverage, lead to fluctuations in oil prices that exceed public
expectations. At the same time, because international crude oil
has characteristics of both commodities and finance, short-term
fluctuations in crude oil prices are closely related to speculation
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(Zhang & Wu, 2019). In recent decades, the price of crude oil
has fluctuated sharply. During the energy crisis in the 1970s,
the sharp spike in oil prices had a huge impact on the global
economy. Oil prices rose dramatically when the Persian Gulf
War broke out in 1990. Then, in the Asian financial crisis in
1997–1998, oil-exporting countries increased production, and
the price of Brent crude fell rapidly. Similarly, in 2008, after
the global financial crisis began, the price of Brent crude oil fell
by more than 70 percent in six months. After the emergence of
Covid-19 in early 2020, oil prices suffered another large shock.
In 2022, crude oil prices quickly rose because of the Russia-
Ukraine conflict. Because of this extreme instability, it is
important for risk in crude oil prices to be managed effectively.

Futures contracts are excellent instruments for risk man-
agement and are frequently used to hedge commodity risks.
Futures hedging means hedgers manage price risk by taking a
position in the futures markets that is the opposite of cash. The
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fundamental challenge in hedging futures is determining the
optimal hedge ratio (OHR), which is the optimal number of
holdings of futures necessary to hedge a single spot exposure.
Since the early work by Johnson (1960), a great deal of
research has emerged about how to determine OHR. For
example, minimum-variance hedging (MVH) is the classical
technique used to determine OHR. Many more recent studies
have discussed the use of the framework of minimum variance
for hedging risk (see Basher & Sadorsky, 2016; Chun et al.,
2019; Evrim Mandacı & Kırkpınar, 2022; Hachicha et al.,
2022; Wang et al., 2014).

Despite its elegance, the traditional method for determining
the MVH ratio is impractical, because it ignores the impact of
market conditions on hedging decisions. Hedgers can face
state-dependent constraints when they decide the final OHR.
So, it is not surprising that hedgers make different decisions in
bull and bear markets. As stated by Chang et al. (2010), in-
vestors change their established hedging methods according to
the trends or patterns in price movements, because the hedging
efficiency of futures differs between bearish and bullish mar-
kets. Thus, hedgers are advised to adjust their hedging strate-
gies in response to the state of the market environment.

At present, Markov-switching generalized autoregressive
conditional heteroskedasticity (MS-GARCH) models are
commonly used in considering state dependence in hedging oil
futures to capture the volatility in oil markets (Chkili, 2017;
Dark, 2015; Maciel, 2021; Pan et al., 2014; Yan & Li, 2018).
The above-mentioned studies load the states with endogenous
switches governed by the Markov process to characterize asset
volatility. However, the drive of exogenous market states
should not be overlooked. The idea behind hedging using fu-
tures contracts is to take a position in futures contracts such that
the return on futures trading can offset the return on the spot
market. Therefore, in hedging futures, the buyer or seller
compensates for the loss of futures (spots) by sacrificing profit
and losses on spots (futures). In that case, if hedgers believe
that market conditions are favorable, they can appropriately
earn income by adjusting the futures position, instead of strictly
following rigid model results. In other words, a state-dependent
hedging strategy can reduce a hedger's unnecessary losses. The
natural questions, then, are how the state of the market envi-
ronment can be identified and how the hedging strategy should
be adjusted to different market states accordingly.

In general, market states cannot be observed directly, which
means that whether the current market condition is bearish or
bullish is unknowable. Although market states cannot be
observed, we can speculate about them based on available in-
direct information. This process of indirect identification can be
modeled with the hidden Markov model (HMM). HMM is a
well-known model for regime identification, widely used in
engineering and science. In recent years, HMM has become a
popular model for predicting the state of financial markets.
Nystrup et al. (2017) state that HMM can mimic the financial
market's tendency to alter behavior abruptly as well as to
maintain new behavior for extended periods following a
change based on information observed. Many scholars have
argued that asset allocation based on HMMs is profitable for
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investors (Bae et al., 2014; Guidolin & Timmermann, 2007;
Kritzman et al., 2012; Liu & Wang, 2017). Although these
studies consider the problem of dynamic asset allocation,
HMM is rarely used for hedging futures.

When HMM is used to identify market states, whether in
asset allocation or hedging applications, the validity and cor-
rectness of the identification are important indicators. The
estimation method for the model parameters of HMM is critical
because the results of parameter estimation directly affect the
accuracy of the model. At present, the most powerful training
method for HMM is the Baum-Welch (BW) algorithm (Baum
et al., 1970). But as Rasmussen and Krink (2003) state,
although the BW algorithm is fast, it encounters the problem of
stagnation at local optima because of the hill-climbing algo-
rithm. The BW algorithm heavily depends on the initial values
of the model parameters. Inaccurate estimations of the model's
initial values can cause the algorithm to fall into a locally
extreme value. Fortunately, the particle swarm optimization
(PSO) algorithm can perform a global search as a random
search algorithm and detect a globally optimal solution (Shen
et al., 2019). Moreover, the PSO algorithm has the following
advantages over other evolutionary algorithms. First, the PSO
algorithm is a derivative-free optimization technique that can
handle any type of objective functions (e.g., nonconvex, non-
differentiable, and discontinuous). Second, the PSO algorithm
has fewer parameters to tune and does not require a good initial
population to search for optimal solutions. Third, PSO can
easily be integrated with other optimization algorithms
(AlRashidi & El-Hawary, 2009). Because of the superior per-
formance of PSO, some papers incorporate the PSO algorithm
to improve the HMM model, increasing the predictive perfor-
mance of the model, and apply it to speech recognition (Najkar
et al., 2010) and bioinformatics (Lalwani et al., 2015; Sun
et al., 2012). Therefore, we use the PSO algorithm to esti-
mate the parameters in HMM (hereafter, the PSO-HMM
method) to achieve more accurate results.

This paper improves hedging performance by considering
the market state. In general, the paper makes the following
three contributions. First, in engineering applications, such as
audio recognition and picture identification, some research has
coupled PSO and HMM. We apply the PSO algorithm to in-
crease the accuracy of market state identification and extend the
improved HMM model to financial risk management. Second,
the effect of the market state on investors’ decisions is
fundamental. The identification results of the market state
directly affect whether hedgers adopt appropriate strategies. It
is unwise to use hedging measures under favorable market
conditions because doing so will offset the benefits they should
have obtained. Although some scholars have studied the state
identification of volatility using regime-switching models, few
of them consider the influence of the market state in research
on hedging futures. Our research combines the macro market
state and hedging strategy. Third, we propose a new hedge
position adjustment method based on the market states identi-
fied, instead of sticking to the position calculated with the
commonly used GARCH-type models to improve the perfor-
mance of the hedging strategy. The superiority of the new
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method is embodied in better trade-off risk hedging and return
acquisition. Therefore, our model and method are more feasible
in practice.

The remainder of this paper is organized as follows. Section
2 introduces the classical HMM and the PSO-HMM. Section 3
presents two kinds of hedge strategies: model-driven hedging
and market-state-dependent hedging. Then the market state
identification results and hedging effect are presented in Sec-
tion 4. Section 5 discusses the robustness checks under
different market conditions. Section 6 concludes the paper.

2. The model
2.1. Hidden Markov model
The discrete HMM by Rabiner (1989) entails two processes:
an unobservable state process S = {s1, s2, ⋅⋅⋅, st} and an
observed process O = {o1, o2, ⋅⋅⋅, ot}, where st is the notation
of the states, and ot denotes observations at time t. st and ot are
in finite state spaces, as st ∈ {q1, q2, ⋅⋅⋅, qN}, ot ∈ {v1, v2, ⋅⋅⋅,
vM}, where N is the number of the hidden states, and M is the
number of different observations per state. The unobservable
process is a Markov chain that cannot be observed directly but
can be inferred from the underlying set of stochastic processes
associated with each state. In addition, the current state of that
Markov chain determines the distribution of another observed
process at any given moment.

The relationship between the hidden state sequence and the
above observation sequence is shown in Fig. 1.

As shown in Rabiner (1989), HMM is characterized by the
following parameters:

• A = aij: the hidden state transition probability matrix,
where aij = P(st+1 = qj|st = qi) represents the probability of
the hidden state qi transferred to qj at time t + 1, and the
matrix size is N × N.

• B = bj(k): the observational state emission probability
matrix, where bj(k) = P (ot = vk|st = qj) represents the
probability that the hidden state qj produces the observed
state vk, and the matrix size is M × N.

• π = πi: the initial state probability distribution, where
πi = P (s1 = qi), 1 ≤ i ≤ N. The complete set of parameters
of HMM can be represented by a triple of λ = (A, B, π).
And the constraints ∑N

i=1πi = 1, aij ≥ 0, ∑N
j=1aij = 1,

bj(k) ≥ 0 and ∑M
k=1bj(k) = 1 hold.

Based on a given observable data set, the parameters of an
HMM model can often be estimated using the Expectation-
Fig. 1. The structure of HMM.
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Maximization (EM) algorithm, also known as the BW algo-
rithm. Using the estimated parameters, the Viterbi algorithm
(Viterbi, 1967) can decode the most likely state sequence, thus
revealing the evolution of hidden states over the sample period.
2.2. Optimized hidden Markov model
When the model parameters are estimated, the traditional
BW algorithm can easily get stuck at locally optimal values. In
order for the estimation results to be more accurate, the initial
parameters of the HMM need to be as close as possible to the
global optimal values. As stated by Rabiner (1989), the initial
value of B in HMM has the greatest impact on the estimation
results. Hence, we use the PSO algorithm to determine the ideal
initial value of B. The specific optimization process is as
follows.

Step 1 Initialization: generate N parameters of B0 randomly.
Step 2 Train HMM: train HMM with B0 as the initial pa-

rameters by BW algorithm.
Step 3 Fitness criterion: based on all the HMMs trained in

Step 2, we perform the maximum possible state esti-
mation and obtain the corresponding estimation
sequence of states. The difference between the state
estimation sequence Ŝ = {s1̂ , s2̂ ,…, st̂ } and the
reference sequence S = {sP1 , sP2 ,…, sPt } is X = Ŝ − S.
We choose the sum of the squared elements in X as the
benchmark for measuring fitness. Let
δ =∑n

i=1 x
2
i (1)
where xi is the ith value of X. Here, we mark the reference
sequence using the method proposed by Pagan and Sossounov
(2003).

Step 4 Update particle position and speed: adjust the parti-
cle's position and speed by comparing the fitness values
δ after each update.

Step 5 Termination conditions: determine the maximum
training number, and set a minimum allowable error
value, when the number of training sessions reaches
the upper limit, the emission matrix B corresponding
to the state estimation is globally optimal.

The general steps of the designed algorithm PSO-HMM can
be summarized in Fig. 2 as follows.

3. Hedging strategies
3.1. Futures minimum-variance hedge ratio
determination
In the framework of futures hedging, a hedge is usually
defined as an investment position in the futures market with the
aim of offsetting potential losses that may be incurred by spots.
Consider a hedger who holds a long position in a spot and
wants to minimize the risk of price fluctuations.



Fig. 2. The PSO-HMM procedure.
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The hedged portfolio’s return, Rhedge
t is denoted by Rhedge

t =
Rs
t − ht × Rf

t , where R
s
t and Rf

t are the spot and futures returns
at time t, respectively, and ht is the hedge ratio. According to
Johnson (1960), the variance of the hedged portfolio's return is
given by

var(Rhedge
t ) = var(Rs

t ) − 2htcov(Rs
t ,R

f
t ) + h2t var(Rf

t ) (2)
where var (⋅) and cov (⋅) are the variance and covariance,
respectively. The minimum-variance hedge ratio is the value of
ht that minimizes var(Rhedge

t ).
The OHR is calculated using the first derivative of Eq. (2)

with respect to ht (Baillie & Myers, 1991).
Fig. 3. The state-depende
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h*t = cov(Rs
t ,R

f
t )

var(Rf
t )

= ρs,ft ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Rs

t )
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Rf

t )
√ (3)

where h*t denotes the OHR and ρs,ft denotes the correlation
coefficient between spot and futures returns.
3.2. Model-driven hedge strategy
In Eq. (3), the key step in obtaining the hedge ratio is
calculating volatility. The model-driven hedge strategy in this
paper refers to using volatility models to estimate and predict
the volatility of spot and futures returns and then calculating
the hedge ratio based on the volatility obtained. Because this
paper focuses on state-dependent hedging strategies, without
losing generality, the volatility models used in this paper
include DCC-GARCH, DCC-IGARCH, DCC-TGARCH,
DCC-NAGARCH, and DCC-GJRGARCH. The definitions of
the volatility models mentioned above are in Appendix B.

To obtain the dynamic hedge ratios, we split the data into
two parts: a training sample and a testing sample, and then
performed a one-step-ahead expanding window forecast. The
entire sample size is marked as T, and the training set size is
marked as w. That is, we use the first w observations as the first
estimation window to predict the volatility of period w + 1 and
estimate the minimum-variance hedge ratio using Eq. (3). We
then recalculate the hedge ratio of period w + 2 using the data
from period 1 to period w + 1, and so on. As a result, it pro-
duces all dynamic hedging ratios of size T − w.
3.3. Market state-dependent hedge strategy
The market state-dependent hedge strategy in this paper
refers to adjusting the model-driven strategy based on the
market states identified by PSO-HMM. Specifically, we first
obtain the hedge ratio based on volatilities calculated with
GARCH-type models. Then, by embedding the PSO algorithm
nt hedge procedure.

mailto:Image of Fig. 2|tif
mailto:Image of Fig. 3|tif


Table 1
Descriptive statistics for Brent crude oil daily returns of spot and futures.

Statistics Spot Futures

Observation 2528 2528

Mean −1.580 × 10−4 −1.680 × 10−4

t-Statistics (μ = 0) −0.271 (0.786) −0.362 (0.718)

Variance 8.610 × 10−4 5.460 × 10−4

Maximum 0.412 0.184

Minimum −0.644 −0.280
Skewness −3.229 −1.023
Kurtosis 119.548 20.892

Q (10) 92.711 (0.000) 14.718 (0.143)

Q2 (10) 503.930 (0.000) 478.990 (0.000)

ARCH(10) 50.530 (0.000) 31.970 (0.000)

Note: The Q (10) shows the Ljung-Box statistics of the correlation test for the
return series, and Q2(10) is that for the square of the return series. ARCH(10)
are Engle (1982) Lagrange multiplier test statistics for residual ARCH effects at
lags 10. The numbers in parenthesis are the P-values of the corresponding
hypothesis tests.
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in the traditional HMM, we use the expanding window to
recursively identify whether the market is bullish or bearish.
Finally, we adjust the hedge ratio of the model-driven hedge
strategy according to the market conditions. The following is
the specific adjustment criterion.

● If the last day is in a rising state → Next day: Rhedge
t =

Rs
t − θup × ht × Rf

t

● If the last day is in a descending state → Next day:
Rhedge
t = Rs

t − θdown × ht × Rf
t

where θup(θup > 1) is the expansion ratio relative to model-
driven position ht, and θdown(θdown < 1) is the reduction
ratio. Fig. 3 illustrates the procedure for a state-dependent
hedge.

4. Empirical results
4.1. Data description
Energy prices have an impact on every sector of the econ-
omy, including households, businesses, and most levels of
government. Therefore, hedging energy price risk is a critical
concern for individuals, businesses, and policy makers (Evrim
Mandacı & Kırkpınar, 2022; Shrestha et al., 2017). Fluctua-
tions in the price of crude oil, which accounts for nearly two-
Fig. 4. Daily prices of Bren

1225
thirds of global energy consumption (Wang et al., 2018), has a
huge impact on the global economy. In the past, the global oil
market has suffered many huge price shocks. As recently as
April 2020, price in the crude oil market fell sharply, and the
price of WTI crude oil futures was even negative. The over-
night shock to the crude oil market hit the participants hard.
Large fluctuations in oil prices and market uncertainty require
investors to adopt effective hedging strategies to reduce in-
vestment risk. Therefore, we look at crude oil futures hedging
as an example for empirical analysis.

4.1.1. Descriptive statistics
In the empirical analysis, we use the Brent crude oil spot

closing price and Brent crude oil futures settlement price from
August 1, 2011, to August 1, 2021. All the data come from the
Choice Financial Database. The return Rt is defined as

Rt = log(Pt) − log(Pt−1) (4)
where Pt is the value of the price at time t.

Table 1 shows descriptive statistics for spot and futures
series. According to the variances, the spot return fluctuate
slightly more than the futures return. In addition, the two return
series are leptokurtic and negatively skewed, with kurtosis
significantly higher than 3, so it can be inferred that the returns
on Brent crude oil have fatter tails than the normal distribution.

The values of the Q statistic show significant serial corre-
lation between the spot and futures returns. Also, the two return
series have a nonlinear autocorrelation relationship. In addition,
the ARCH effect tests reject the null hypothesis of a correct
model specification, indicating strong heteroskedasticity, which
suggests that a long-term memory GARCH-type model can be
applied in this study later.

4.1.2. Data preparation for the HMM model
Fig. 4 plots the daily spot and futures prices of crude oil

from August 1, 2011, to August 1, 2021, showing that the two
series are very close to each other and are basically synchro-
nized. We assume that the states of the two markets are
consistent. Therefore, we identify the market states based on
spot prices, and we believe that the futures market state is the
same as the spot market state. In this paper, a set of spot return
sequences including daily, five-day, and ten-day returns are
used as observations in the HMM. One reason for this
consideration is that the sequence of multiple frequencies can
t oil spot and futures.

mailto:Image of Fig. 4|tif


Fig. 5. Coding process of the daily return into a set of symbols.
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provide more historical information, which is conducive to
accurately identifying the market states for HMM.

4.1.3. Coding data into HMM symbols
When the observation sequence is continuous, the proba-

bility bj(k) that a given hidden state st produces a random
observation ot should be expressed as a continuous probability
density function, and most methods approximate this rela-
tionship with a normal distribution.

According to the descriptive statistics in Table 1, the normal
distribution dose not accurately model the probability distri-
bution of the Brent crude oil return series. So, we use the
method of discretizing stock returns to convert the probability
of the observations generated by the HMM model into a
discrete value. Specific steps are described hereafter, and Fig. 5
displays an example of the coding process of the daily return.

Because the return contains outliers, we first select the in-
terval range [−L, L] and then divide the small intervals of
equal distance (V) in positive and negative directions, with 0 as
the center point, until the cell contains the maximum value L
and the minimum value −L. And we also set two open in-
tervals greater than L and less than −L, respectively. Finally,
the yield value is transformed to the relevant discrete value
based on the interval in which it is located. Here the values of
L of the daily return, five-day return, ten-day return are 0.05,
0.1, and 0.15, and the values of V are 0.01, 0.02, and 0.03,
Fig. 6. The distributions of daily return,

Fig. 7. Market state identificati
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respectively. In Fig. 6, we conclude that the interval settings in
this paper are reasonable.
4.2. Market state identification results
Figs. 7 and 8 show the market state identification results
decoded by HMM and PSO-HMM, respectively. Fig. 7 shows
that HMM can capture the main trends in the crude oil market
in the full sample period. The blue scatter plot represents a bear
market, and the red scatter plot denotes a bull market. It seems
clear that several market states based on HMM are misjudged
during some periods (e.g., the period October 2014 to
December 2014). Therefore, we are inspired to improve the
identification accuracy of the model. The identification results
based on the novel model called PSO-HMM in this paper are
shown in Fig. 8.

Following Liu and Wang (2017), we present the empirical
statistical results of HMM and PSO-HMM in Table 2, then
confirm some of our interpretations. The Z-statistic for the two
models indicates that the mean of state 0 is substantially below
0 at the 1 percent significance level, whereas the mean of state
1 is significantly above 0 at the 1 percent significance level. In
addition to the fact that negative returns are more common than
positive returns in state 0, positive returns are also more
common than negative returns in state 1. The findings show
that hidden states, which can be understood as market condi-
tions, govern the time-varying distribution of returns. Specif-
ically, state 0 is associated with bear markets, whereas state 1 is
associated with bull markets. State 0 has a higher standard
deviation than state 1, which indicates greater volatility in a
bear market, and the Z-statistics and return frequency of PSO-
HMM have higher significance. Furthermore, the frequency of
positive returns in state 1 identified by PSO-HMM is 0.61922,
which is larger than HMM, and the frequency of negative
returns in state 0 identified by PSO-HMM is also more than
five-day return, and ten-day return.

on results based on HMM.

mailto:Image of Fig. 5|tif
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Fig. 8. Market state identification results based on PSO-HMM.

Table 2
Comparison results of HMM and PSO-HMM in identifying market states.

HMM PSO-HMM

state 0 state 1 state 0 state 1

Mean −0.00822 0.00273 −0.00624 0.00503

Std. 0.04761 0.01808 0.03611 0.02061

Sample size 666 1861 1164 1363

Z-statistics −4.45760*** 6.50604*** −5.89439*** 9.01233***
Negative return freq. 0.66967 0.33033 0.63144 0.36856

Positive return freq. 0.43418 0.56582 0.38078 0.61922

Note: The equation for z-statistics is zi = xi
̄

σi/
̅̅̅̅
ni

√ for i ∈ 1, 2, where xī is the

mean of return in state i, σ is the standard deviation of state i, and ni is the
sample size of state i. *** significant at 1%.
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0.6. In short, the results obtained from PSO-HMM are
reasonable and more accurate in identifying market states.
4.3. Further explanation to the superiority of PSO-HMM
Intuitively, bull markets have higher yield than bear mar-
kets. Based on the bull and bear market states identified by
HMM and PSO-HMM, we compare the cumulative returns of
Rt+1 under the two states shown in Fig. 9.

Fig. 9 shows that the cumulative return in state 1 is
increasing and the cumulative return in state 0 is decreasing,
indicating that state changes are more likely to continue in the
same state, rather than transition to another state (Zhang et al.,
2019). In this way, we show that it is possible to profit by
identifying market states and get better hedging returns (or
avoid unnecessary hedging losses) according to a state-
Fig. 9. The cumulative logarithm
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dependent hedging strategy. Furthermore, the return identi-
fied based on PSO-HMM is higher than that of HMM in the
bull market, whereas in the bear market, the loss of PSO-HMM
is greater than that of HMM. The results also imply that the
proposed PSO-HMM is more accurate than HMM in state
identification.
4.4. Hedging results
In order to effectively compare the hedging effects between
different strategies, we selected several common evaluation
criteria. The existing literature lists some criteria for measuring
hedging effects (Liu, 2014; Zhao et al., 2019), of which the
most widely used are the mean of returns, the standard devi-
ation (or variance) of returns, and the ratio of the mean to the
standard deviation of returns (Howard & D'Antonio, 1984). We
compare these criteria for the hedged portfolio between the
model-driven hedge strategy and the market state-dependent
hedge strategy. Fig. 10 shows the short process we used to
obtain our results.

We set the data from August 1, 2011, to July 31, 2019, as
the training set and August 1, 2019, to August 1, 2021, as the
test set. Following the forecasting process shown in Fig. 3, we
obtain the hedging positions and market states in the testing set
with a one-step-ahead sliding forecast. Following the imple-
mentation process in Fig. 10, we compare the out-of-sample
results of different hedging strategies in Table 3. We also
calculate the cumulative returns of different hedging strategies
(see Fig. 11).

In Table 3, the mean return is significantly higher with a
state-dependent strategy than with a model-driven strategy
ic return of different states.
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Fig. 10. The process used in obtaining our results.

Table 3
The hedging effect over the full sample period.

Mean Standard deviation Mean/standard deviation

No hedging 0.000378 0.053021 0.001641

Model driven −0.000609 0.031916 −0.003406
State dependent 0.001598 0.030597 0.009137
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with no hedge. The standard deviation differs little between the
two strategies but is significantly lower than with no hedging.
The ratio of the mean to the standard deviation is far higher
Fig. 11. The cumulative earnings fro
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with the state-dependent strategy than with the model-driven
strategy and no hedge. Therefore, it is clear that the state-
dependent hedging strategy increases the returns on the
hedge portfolio without significantly increasing the risk of the
standard deviation, so its ratio of the mean to the standard
deviation is much higher.

And as shown in Fig. 11, after hedging, when the price falls,
the hedged portfolio has much smaller losses than the spot, and
the state-dependent hedging portfolio has optimal performance.
When spot prices rise, spot cumulative earnings grow rapidly,
m different hedging strategies.
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but the final cumulative earnings are still close to 0 because the
losses are very large during price falls. Although the return on
the hedged portfolio based on the state-dependent strategy
grew rapidly between the end of April and June 2020, when
crude oil prices rebounded rapidly, it achieved the highest
cumulative returns of the sample period. In sum, we believe
that state-dependent hedging strategies are superior to model-
driven strategies.

Next we calculate the evaluation criteria every three
months, and the results are shown in Fig. 12. The first subplot
describes the results of the mean. The state-dependent strategy
is mostly superior to the model-driven hedging strategy.
Especially in the first half of 2020, although the spot price
changed sharply, the state-dependent strategy achieved a
positive return that is far higher than that of the model-driven
strategy. As shown in the last subplot, we find that the state-
dependent strategy has far lower variance than no hedging.
Although the state-dependent hedge portfolio has a larger
standard deviation than the model-driven portfolio, the mini-
mum standard deviation was achieved in April 2020, indi-
cating that the hedging effect of the model-driven hedging
strategy might deteriorate when the price changes very
sharply, whereas the state-dependent portfolio performs well.
Based on the ratio of the mean to the standard deviation, as
shown in the third subplot, the state-dependent hedging strat-
egy is almost the best. In sum, the state-dependent hedging
strategy has a good hedging effect in the short term, especially
when the price changes sharply.

We also split the sample by two other segmentation points
to test the stability of the models over time, and the state-
dependent strategy still performs better. The results are
shown in Appendix C.
Fig. 12. Hedging effect evalu
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5. Robustness checks
5.1. Different evaluation spans
Because different hedgers have different hedging periods,
short or long, in order to test the performance of the state-
dependent hedging strategy in different spans, we calculate
the hedging results in terms of one, six, and nine months. The
results are shown in Table 4. During the one-month evaluation
period, the state-dependent strategy had a higher return than the
model-driven strategy in 19 of the 24 months and a 17-month
return-variance ratio that was higher than that of the model-
driven strategy. During the six- and nine-month evaluation
periods, the mean and the ratio of the mean to the standard
deviation of the state-dependent hedging strategy were higher
than those of the model-driven strategy. We find that, for
hedgers with different evaluation periods, the state-dependent
hedging strategy is desirable, especially for the pursuit of in-
come. Similarly, the proposed model performs well when the
market fluctuates violently. Based on a vertical comparison, we
conclude that the state-dependent strategy has more significant
advantages for long-term hedgers.

The impact of the sharp decline in crude oil prices in April
2020 had a very adverse impact on the market, during which
futures and spot prices not only fluctuate sharply but also have a
large basis, which poses a great challenge for crude oil hedging.
In order to test the hedging results of a state-dependent strategy
under extreme market conditions, we select this period to
evaluate the hedging effect. In the penultimate row in 4, during
the oil shock period, the robustness of the market state forecast
is reflected, and the state-dependent strategy still has good per-
formance in response to extreme market changes.
ated every three months.

mailto:Image of Fig. 12|tif


Table 4
Hedging performance for different evaluation periods.

Period Mean Standard deviation Mean/Sstandard deviation Variance

Model-driven State-dependent Model-driven State-dependent Model-driven State-dependent No hedging State-dependent HE

Panel I. Hedging performance for the evaluation period of 1 months
2019–08 0.000211 0.000468 0.019994 0.017533 0.010546 0.026673 0.000670 0.000307 0.541179
2019–09 −0.001132 −0.004076 0.018207 0.028808 −0.062169 −0.141490 0.001329 0.000830 0.375343
2019–10 −0.001095 −0.000456 0.014630 0.014938 −0.074844 −0.030520 0.000359 0.000223 0.377653
2019–11 0.002027 0.002574 0.010131 0.009803 0.200091 0.262592 0.000158 0.000096 0.392471
2019–12 −0.000637 0.001113 0.009463 0.011836 −0.067269 0.094019 0.000224 0.000140 0.373501
2020–01 −0.001505 −0.000306 0.013585 0.013401 −0.110793 −0.022833 0.000396 0.000180 0.546316
2020–02 0.000087 0.003137 0.011469 0.014193 0.007616 0.221012 0.000671 0.000201 0.699999
2020–03 −0.016313 −0.002362 0.049067 0.061524 −0.332472 −0.038384 0.007884 0.003785 0.519877
2020–04 −0.002118 0.008217 0.135539 0.116725 −0.015624 0.070393 0.045770 0.013625 0.702323
2020–05 −0.001249 0.014378 0.050039 0.041659 −0.024970 0.345126 0.003304 0.001735 0.474795
2020–06 −0.000962 0.001764 0.011933 0.015405 −0.080622 0.114493 0.001272 0.000237 0.813489
2020–07 0.000226 0.000011 0.006624 0.009011 0.034130 0.001186 0.000208 0.000081 0.608775
2020–08 0.000833 0.001626 0.008548 0.011364 0.097471 0.143101 0.000230 0.000129 0.439151
2020–09 0.000071 −0.001008 0.011556 0.019491 0.006127 −0.051694 0.000851 0.000380 0.553495
2020–10 −0.001345 −0.002226 0.006916 0.013246 −0.194494 −0.168071 0.000731 0.000175 0.759936
2020–11 0.002416 0.005129 0.005694 0.015613 0.424360 0.328480 0.000618 0.000244 0.605429
2020–12 0.001478 0.002221 0.005758 0.008662 0.256731 0.256362 0.000185 0.000075 0.594089
2021–01 0.000523 0.002289 0.004804 0.010593 0.108939 0.216097 0.000295 0.000112 0.619684
2021–02 0.001710 0.005246 0.005272 0.008561 0.324300 0.612827 0.000182 0.000073 0.598021
2021–03 −0.000571 −0.003074 0.008545 0.019650 −0.066768 −0.156416 0.001234 0.000386 0.687139
2021–04 0.001364 0.001501 0.015197 0.015804 0.089783 0.094987 0.000289 0.000250 0.135567
2021–05 −0.000015 −0.000810 0.004675 0.009112 −0.003296 −0.088890 0.000293 0.000083 0.716175
2021–06 0.001274 0.002619 0.003475 0.005647 0.366558 0.463695 0.000080 0.000032 0.599896
2021–07 0.000143 0.001394 0.007036 0.011701 0.020380 0.119098 0.000522 0.000137 0.737864
Panel II. Hedging performance for the evaluation period of 6 months
2020–01 −0.000335 −0.000072 0.014618 0.016817 −0.022941 −0.004300 0.000508 0.000283 0.443330
2020–07 −0.003332 0.004125 0.061247 0.055941 −0.054398 0.073744 0.009849 0.003129 0.682252
2021–01 0.000617 0.001253 0.007507 0.013554 0.082232 0.092406 0.000505 0.000184 0.636339
2021–07 0.000625 0.001085 0.008199 0.012756 0.076245 0.085051 0.000437 0.000163 0.627381
Panel III. Hedging performance for the evaluation period of 9 months
2020–04 −0.002242 0.000940 0.048670 0.045290 −0.046056 0.020759 0.006261 0.002051 0.672379
2021–01 0.000194 0.002595 0.017884 0.018827 0.010823 0.137843 0.000919 0.000354 0.614249
2021–10 0.000625 0.001085 0.008199 0.012756 0.076245 0.085051 0.000437 0.000163 0.627381
Panel IV. Hedging performance during the period of the oil shock
Oil shock period 1 0.001769 0.026258 0.137414 0.101527 0.004772 0.082409 0.046589 0.010308 0.778752
Oil shock period 2 0.004005 0.020763 0.114086 0.093376 0.011859 0.067947 0.034717 0.008719 0.748854
Oil shock period 3 −0.002885 0.012219 0.102839 0.089478 −0.008997 0.040847 0.024777 0.008006 0.676857

Note: The column labeled HE represents the hedging efficiency of the model-driven strategy. HE can be calculated by HE = 1− var(Rhedge)
var(Rs) , var(Rhedge) and var(Rs)

are the variance of the hedging portfolio's return and the variance of spot's return, respectively. Oil shock periods 1, 2, and 3 are April 10–30, 2020; April 1-May 10,
2020, and March 20-May 20, 2020, respectively.

X. Yu, Y. Li, X. Shen et al. Borsa _Istanbul Review 22-6 (2022) 1221–1237
5.2. Different adjustment range in model-driven hedge
ratio
A characteristic of the state-dependent strategy is to adjust
the positions obtained by the traditional volatility models ac-
cording to the market state. When the market state is positive, a
hedger is recommended to reduce model-driven positions to
pursue spot returns. Likewise, when market conditions are
negative, a hedger can obtain additional returns on futures by
increasing model-driven positions. In our empirical study, we
assume that θup = 0.5, θdown = 1.5. In this section, we perform
a robustness test of the adjustment range. We select three pairs
of values for (θup, θdown) and calculate the results on the three-
month evaluation period (see Table 5). Regardless of how (θup,
θdown) is adjusted, we can conclude that the mean and the ratio
of the mean to the standard deviation of the state-dependent
1230
strategy are higher than those with the model-driven strategy,
and the state-dependent hedge strategy is better than no
hedging, based on the variance.

We also find that, when θup becomes smaller and the value
of θdown becomes larger, the gap between the two strategies
becomes larger by every evaluation criterion. Therefore, the
state-dependent strategy yields more benefits and performs
better.
5.3. Different data frequency
To compare the performance of the method to hedge oil in
the short and long term, we change the frequency of the data.
As with the daily hedging strategy, we use weekly and monthly
data for one-step sliding state identification and hedging posi-
tion forecasting to achieve long-term state-dependent hedging.



Table 5
Hedging results with different adjusting ratios.

Date 2019–10 2020–01 2020–04 2020–07 2020–10 2021–01 2021–04 2021–07

Mean Model-driven −0.000664 0.000004 −0.006115 −0.000635 −0.000184 0.001457 0.000798 0.000457

(0.8, 1.2) −0.000901 0.000463 −0.002470 0.001707 −0.000346 0.002147 0.000916 0.000705

(0.8, 1.4) −0.000991 0.000759 0.000603 0.001463 −0.000186 0.001962 0.000719 0.000675

(0.6, 1.6) −0.001228 0.001218 0.004248 0.003804 −0.000348 0.002652 0.000837 0.000923

Standard deviation Model-driven 0.017423 0.011140 0.082455 0.029025 0.009047 0.005398 0.010430 0.005287

(0.8, 1.2) 0.017942 0.010956 0.077431 0.025290 0.010631 0.007608 0.011724 0.006116

(0.8,1.4) 0.019376 0.010854 0.074715 0.025327 0.011756 0.007823 0.012722 0.006814

(0.6, 1.6) 0.021592 0.011278 0.075247 0.025077 0.014895 0.010635 0.015527 0.009096

Mean/Standard deviation Model-driven −0.038131 0.000369 −0.074157 −0.021860 −0.020329 0.269995 0.076542 0.086491

(0.8, 1.2) −0.050244 0.042216 −0.031897 0.067490 −0.032500 0.282228 0.078133 0.115320

(0.8, 1.4) −0.051153 0.069968 0.008071 0.057762 −0.015828 0.250752 0.056523 0.099111

(0.6, 1.6) −0.056885 0.107988 0.056451 0.151703 −0.023340 0.249313 0.053892 0.101518

Variance No hedging 0.000740 0.000277 0.017930 0.001658 0.000601 0.000367 0.000586 0.000298

(0.8, 1.2) 0.000322 0.000120 0.005996 0.000640 0.000113 0.000058 0.000137 0.000037

(0.8, 1.4) 0.000375 0.000118 0.005582 0.000641 0.000138 0.000061 0.000162 0.000046

(0.6, 1.6) 0.000466 0.000127 0.005662 0.000629 0.000222 0.000113 0.000241 0.000083

Fig. 13. Hedging results of state-dependent strategy using weekly and monthly data.

Table 6
Robustness test of hedging performance for different benchmark models.

GARCH IGARCH TGARCH NAGARCH GJRGARCH

Mean Model-driven −0.000609 −0.000612 −0.000356 −0.000502 −0.000624
State-dependent 0.001598 0.001592 0.001680 0.001565 0.001505

Standard deviation Model-driven 0.031916 0.031929 0.031865 0.032165 0.032117

State-dependent 0.030597 0.030537 0.030623 0.030754 0.030451

Mean/Standard deviation Model-driven −0.003406 −0.003426 −0.001992 −0.002799 −0.003483
State-dependent 0.009137 0.009110 0.009598 0.008924 0.008623
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We conduct hedging evaluations every three months. In
Fig. 13, we find that whether we use the weekly or monthly
hedging process, state-dependent strategies achieve a higher
mean and ratio of the mean to the standard deviation and
Table 7
The hedging effect of WTI crude oil over the full period.

Mean Standard deviation Mean/standard deviation

No hedging −0.005964 0.154336 −0.015181
Model driven 0.000039 0.059751 0.000158

State dependent 0.010295 0.076497 0.037222

1231
greatly reduce risk in the spot market, compared to no hedging.
We contend that, in the long run, state-dependent strategies
continue to perform well.
5.4. Different benchmark models of volatility
The model-driven strategies mentioned in this paper refer to
the hedge positions obtained based on volatility models, such
as GARCH-type models. To test the robustness of the bench-
mark hedging models, we analyze the hedging results based on
different volatility models, such as IGARCH, TGARCH,
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Fig. 14. Hedging effect evaluated every two weeks.
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NAGARCH, and GJRGARCH models. The values in Table 6
are the evaluation results in the test set, and the evaluation
results for every three months are shown in Appendix D. We
find that the state-dependent strategy still has advantages,
regardless of the benchmark model used. From this perspec-
tive, we propose the use of benchmark-adjusted positions in
futures hedging methods.
5.5. Different varieties of crude oil
The WTI crude oil market, as another major global bench-
mark for crude oil, is used to further verify the hedging ability
of the proposed approach. The purpose is to show that our
model works not only for Brent risk hedging but also for other
crude oil varieties. In addition, WTI crude oil experienced an
extreme price decline in 2020 and is a good sample for testing
the robustness of the model in extreme cases. In particular, the
selection of WTI crude oil better illustrates the importance of
risk and return trade-offs because WTI crude oil futures turned
negative in April 2020, resulting in significant losses to market
participants. In this section, we use data from August 23, 2011,
to May 31, 2020. Using February 23, 2020 as the dividing date,
the full data period is divided into a training set and a test set.
The criteria for measuring hedging effects are shown in Table 7
and Fig. 14. Table 7 shows the hedging effect over the full
period, and the results of Fig. 14 are based on every two weeks.

We find that, although the price of WTI rebounded quickly
after bottoming out on April 23, 2020, the average return
remained negative, even after two months of recovery (see
Table 7). It means that investors have a difficult time making
up for the losses in the spot market from crude oil in a short
time, and hedging with futures to reduce losses is necessary. As
seen in Fig. 14, a higher return can be achieved with the state-
dependent hedge strategy (see the first subplot in Fig. 14).
Although the standard deviation of the hedged portfolio
1232
becomes larger, the state-dependent hedge strategy still per-
forms better than the model-driven hedge strategy in a com-
parison of the ratio of the mean to the standard deviation of
returns as a comprehensive evaluation criterion.

Our results lead us to conclude that the hedging strategy
based on state identification performs well during sharp price
fluctuations. It can also help market participants predict price
fluctuations and avoid risk effectively.

6. Conclusion

This paper has two goals. First, to identify market states
more accurately in the crude oil markets, we improve the
traditional HMM by using the PSO algorithm and propose a
new PSO-HHM method. Second, we adjust the model-driven
ratio and assess the performance of the proposed hedging
model. The main findings from our analysis are as follows.

First, the traditional HMM is easily trapped in local opti-
mization when parameters are estimated. Improper parameter
estimation can lead to inaccurate state identification results and
even poor decisions. To overcome this problem, we designed a
PSO algorithm to obtain globally optimal solutions of initial
parameters. The results suggest that the PSO-HMM model is
more reasonable and accurate in identifying the market states.

Second, traditionally, dynamic minimum-variance hedge
ratios (MVHRs) are determined based on model-driven stra-
tegies. However, traditional hedging strategies do not consider
the trade-off between avoiding risk and obtaining returns on a
hedged portfolio. When market conditions are positive, a
hedger who holds a short position in futures can reduce the
position driven by the model so as to benefit from the positive
market, and the reverse is true as well. The model-driven hedge
ratio in this paper is adjusted based on the state of the market.
From this point of view, this paper integrates model-driven and
market state-dependent hedging strategies to trade off risks and
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returns. The results show that the state-dependent hedging
strategy, whether the evaluation period is long term or short
term, has a better hedging effect, and this hedging effect is still
amazing when crude oil prices fluctuate significantly. In
addition, the hedging results based on weekly and monthly data
indicate that a state-dependent hedging strategy can achieve
positive returns in long-term hedging.

Third, we test the robustness of the proposed model. The
robustness is tested with different hedging evaluation periods,
different adjustment ranges of positions, different benchmark
models for volatility estimation, different data frequency,
different crude categories, and different market conditions,
such as the shock in April 2020. The robustness checks on the
hedging effect confirm that the proposed model still out-
performs the model-driven strategy and provides a better
hedging effect than no hedge.

Our study has some limitations, such as it does not consider
the presence of transaction costs for hedging. Future research
could be conducted, for instance, to detect the presence of
transaction costs and to develop other futures hedging models
that consider transaction costs and margin calls in the crude oil
market, which could produce more realistic and effective
results.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.bir.2022.08.008.
Appendix A. Particle swarm optimization algorithm

Particle swarm optimization is a global search algorithm
proposed by Kennedy and Eberhart (1995), which consists of a
number of particles flying around in the search space. The PSO
requires each individual particle to maintain two vectors during
the evolution process: a velocity vk = [v1i , v2i , ⋅ ⋅ ⋅, vDi ], a posi-
tion vector xk = [x1i , x2i , ⋅ ⋅ ⋅, xDi ], where the i is the symbol of
particle, and D is the dimension of the parameters for a prob-
lem. For each particle, there is a best position (pBest) that will
be updated when a better position arrives. And the best particle
in the swarm symbolized by gBest make the particles converge
1233
to the global optimal region. The procedure of the PSO as
follows:

Step 1 Randomly initialize a swarm of particles in a
D-dimensional search space, then initialize their speed
and position, set the individual’s historical best pBest
as the current position, and the best individual in the
group as the current gBest.

Step 2 In each round of evolution, evaluate the fitness of the
entire swarm.

Step 3 If the particle's current fitness function value is higher
than its previous optimal value, the historical optimal
value is replaced with the present position.

Step 4 If the particle's individual optimal is better than the
global optimal, the global optimal will be replaced with
the particle's optimal value.

Step 5 The speed and position of the dth dimension of each
particle i are updated according to the following two
equations:
vdi = ω× vdi + c1 × randd
1 × (pBestdi − xdi ) + c2 × randd

2

× (gBestdi − xdi )

xdi = xdi + vdi

In the above equation, ω is the inertia weight; c1 and c2 are

acceleration coefficients (also called learning factors); in the
two equations rand is a random number in the interval [0,1].

Step 6 Determine whether the end condition is reached,
continuing to step 2 if it does not; otherwise, output
gBest and end.

Appendix B. DCC model

Engle (2002)’s DCC model is used to predict dynamic
volatility, conditional correlations, and hedging ratios between
spot and future returns in this article.

Rs
t = μs + 3

s
t ,

Rf
t = μf + 3

f
t ,

( 3st

3
f
t

)⃒⃒⃒⃒ψt−1 ∼ N(0,Ht),

where Rs
t and Rf

t are the day t returns of the spot and the futures,
respectively, ψt−1 the set of all the information before day
(t − 1) and Ht is the conditional covariance matrix modeled as:

Ht = [ Hs
t Hs,f

t

Hs,f
t Hs

t

]
=
⎡⎢⎣ ̅̅̅̅̅̅

Hs
t

√
0

0
̅̅̅̅̅̅
Hs

t

√
⎤⎥⎦× [ 1 ρs,ft

ρs,ft 1
]×

⎡⎢⎣ ̅̅̅̅̅̅
Hs

t

√
0

0
̅̅̅̅̅̅
Hs

t

√
⎤⎥⎦ = DtRtDt

https://doi.org/10.1016/j.bir.2022.08.008


X. Yu, Y. Li, X. Shen et al. Borsa _Istanbul Review 22-6 (2022) 1221–1237
where Rt is the conditional correlation matrix, and Dt is a di-
agonal matrix with time-varying standard deviations on the

diagonal, ρs,ft = Hs,f
t̅̅̅̅̅̅̅̅

Hs
tH

f
t

√ is the day t correlation between the spot

and the futures returns, Hs
t and Hf

t are the day t variances of the

spot and the futures, respectively. The expressions for Hf
t , H

f
t

are univariate GARCH class models. Here, only the single-
variable GARCH model is described, and other GARCH-
type models are detailed by Engle and Bollerslev (1986),
Zakoian (1994), Engle and Ng (1993), and Glosten et al.
(1993).
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Table A: Empirical statistical results, February 1, 2019, to August 1, 2021.

No hedging GARCH

Mean Model-driven 0.000343 −0.0005
State-dependent 0.000747

Standard deviation Model-driven 0.048144 0.029083

State-dependent 0.028166

Mean/Standard deviation Model-driven 0.001561 −0.0030
State-dependent 0.00445

1234
Qt is a symmetric positive definite matrix, Q
̄
is the uncon-

ditional correlation matrix of the spot and the futures returns,

and zt−1 = ( 3st /
̅̅̅̅
Hs

t

√

3
f
t /

̅̅̅̅
Hf

t

√ ) is the standardized residual vector, The

parameters α and β are nonnegative scalars with α + β ≤ 1, and
they are related with the exponential smoothing process used to
create the dynamic conditional correlations.
Appendix C. The different slide window

We split the sample by two other segmentation points to test
the stability of the models over time. The first point is February
1, 2019 (i.e., training sample: August 1, 2011, to January 31,
2019, testing sample: February 1, 2019, to August 1, 2021); the
second point is February 1, 2020 (i.e., training sample: August
1, 2011, to January 31, 2020, testing sample: February 1, 2020,
to August 1, 2021). The hedged portfolio return based on state-
dependent strategy is higher than that based on model-driven
strategies (see Tables A and B, Fig. A and B). The hedging
strategy based on states is still robust.
IGARCH TGARCH NAGARCH GJRGARCH

17 −0.000518 −0.000309 −0.000425 −0.000531
0.000747 0.000769 0.000725 0.000644

0.029099 0.02904 0.029304 0.029267

0.028112 0.028198 0.028393 0.028041

32 −0.003038 −0.001812 −0.002485 −0.003102
0.004454 0.004582 0.0043 0.003846
Fig. A:Hedging results, February 1, 2019, to August 1, 2021.



Table B: Empirical statistical results, February 1, 2020, to August 1, 2021.

No hedging GARCH IGARCH TGARCH NAGARCH GJRGARCH

Mean Model-driven 0.000777 −0.000709 −0.000718 −0.000513 −0.000642 −0.000785
State-dependent 0.001407 0.001392 0.001281 0.001260 0.001207

Standard deviation Model-driven 0.059925 0.035938 0.035956 0.035869 0.036252 0.036159

State-dependent 0.034289 0.034244 0.034459 0.034760 0.034250

Mean/Standard deviation Model-driven 0.003172 −0.003739 −0.003785 −0.002711 −0.003371 −0.004130
State-dependent 0.007596 0.007520 0.006898 0.006756 0.006520
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Fig. B:Hedging results, February 1, 2020, to August 1, 2021.
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Appendix D. The different benchmark models

Fig. C: Hedging results under different GARCH models.
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